Nanoindentation differentiates tissue-scale functional properties of native articular cartilage.

نویسندگان

  • Cheng Li
  • Lisa A Pruitt
  • Karen B King
چکیده

Cartilage mechanical properties are typically tested at the macroscale. To demonstrate the ability of nanoindentation to characterize in situ articular cartilage properties at the tissue scale, we investigated the local structure-property relationships of intact articular cartilage of a normal rabbit metacarpophalangeal joint. We calculated the mechanical parameters of stiffness, S, resistance to penetration, R, and volumetric creep strain, dV/V, from nanoindentation of the articular surface at specific regions of interest. We measured morphological parameters of superficial zone thickness, middle zone thickness, total uncalcified thickness, and cell density from corresponding regions with light and polarized light microscopy. Mechanical parameters were compared to morphological parameters. There were significant positive correlations (r = 0.98, p < 0.05) between superficial zone thickness and both S and R. However, we found no significant correlation between dV/V and the zone sizes. There were moderate, negative correlations between cell density and both S and R, suggesting an effect of cell volume on cartilage behavior at the tissue scale. We opine that the superficial zone plays important role in load support, as evidenced by correlations between zone size and intact cartilage mechanical properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Raman Spectroscopy Reveals New Insights into the Zonal Organization of Native and Tissue-Engineered Articular Cartilage

Tissue architecture is intimately linked with its functions, and loss of tissue organization is often associated with pathologies. The intricate depth-dependent extracellular matrix (ECM) arrangement in articular cartilage is critical to its biomechanical functions. In this study, we developed a Raman spectroscopic imaging approach to gain new insight into the depth-dependent arrangement of nat...

متن کامل

Functional Properties of Cell-Seeded Three-Dimensionally Woven Poly(ε-Caprolactone) Scaffolds for Cartilage Tissue Engineering

Articular cartilage possesses complex mechanical properties that provide healthy joints the ability to bear repeated loads and maintain smooth articulating surfaces over an entire lifetime. In this study, we utilized a fiber-reinforced composite scaffold designed to mimic the anisotropic, nonlinear, and viscoelastic biomechanical characteristics of native cartilage as the basis for developing f...

متن کامل

Supporting Biomaterials for Articular Cartilage Repair

Orthopedic surgeons and researchers worldwide are continuously faced with the challenge of regenerating articular cartilage defects. However, until now, it has not been possible to completely mimic the biological and biochemical properties of articular cartilage using current research and development approaches. In this review, biomaterials previously used for articular cartilage repair researc...

متن کامل

Engineering lubrication in articular cartilage.

Despite continuous progress toward tissue engineering of functional articular cartilage, significant challenges still remain. Advances in morphogens, stem cells, and scaffolds have resulted in enhancement of the bulk mechanical properties of engineered constructs, but little attention has been paid to the surface mechanical properties. In the near future, engineered tissues will be able to with...

متن کامل

Dynamic nanoindentation of articular porcine cartilage

a r t i c l e i n f o Keywords: Articular cartilage Biological materials Indentation Time-dependent mechanical properties Storage and loss modulus Dynamic nanoindentation Articular cartilage is a poroelastic (biphasic) material with a complex deformation behavior, which can be considered elastic–viscoelastic. In this article, articular porcine cartilage is tested in vitro using dynamic nanoinde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical materials research. Part A

دوره 78 4  شماره 

صفحات  -

تاریخ انتشار 2006